Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Neurol ; 22(5): 407-417, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059509

RESUMO

BACKGROUND: Emerging evidence shows that α-synuclein seed amplification assays (SAAs) have the potential to differentiate people with Parkinson's disease from healthy controls. We used the well characterised, multicentre Parkinson's Progression Markers Initiative (PPMI) cohort to further assess the diagnostic performance of the α-synuclein SAA and to examine whether the assay identifies heterogeneity among patients and enables the early identification of at-risk groups. METHODS: This cross-sectional analysis is based on assessments done at enrolment for PPMI participants (including people with sporadic Parkinson's disease from LRRK2 and GBA variants, healthy controls, prodromal individuals with either rapid eye movement sleep behaviour disorder (RBD) or hyposmia, and non-manifesting carriers of LRRK2 and GBA variants) from 33 participating academic neurology outpatient practices worldwide (in Austria, Canada, France, Germany, Greece, Israel, Italy, the Netherlands, Norway, Spain, the UK, and the USA). α-synuclein SAA analysis of CSF was performed using previously described methods. We assessed the sensitivity and specificity of the α-synuclein SAA in participants with Parkinson's disease and healthy controls, including subgroups based on genetic and clinical features. We established the frequency of positive α-synuclein SAA results in prodromal participants (RBD and hyposmia) and non-manifesting carriers of genetic variants associated with Parkinson's disease, and compared α-synuclein SAA to clinical measures and other biomarkers. We used odds ratio estimates with 95% CIs to measure the association between α-synuclein SAA status and categorical measures, and two-sample 95% CIs from the resampling method to assess differences in medians between α-synuclein SAA positive and negative participants for continuous measures. A linear regression model was used to control for potential confounders such as age and sex. FINDINGS: This analysis included 1123 participants who were enrolled between July 7, 2010, and July 4, 2019. Of these, 545 had Parkinson's disease, 163 were healthy controls, 54 were participants with scans without evidence of dopaminergic deficit, 51 were prodromal participants, and 310 were non-manifesting carriers. Sensitivity for Parkinson's disease was 87·7% (95% CI 84·9-90·5), and specificity for healthy controls was 96·3% (93·4-99·2). The sensitivity of the α-synuclein SAA in sporadic Parkinson's disease with the typical olfactory deficit was 98·6% (96·4-99·4). The proportion of positive α-synuclein SAA was lower than this figure in subgroups including LRRK2 Parkinson's disease (67·5% [59·2-75·8]) and participants with sporadic Parkinson's disease without olfactory deficit (78·3% [69·8-86·7]). Participants with LRRK2 variant and normal olfaction had an even lower α-synuclein SAA positivity rate (34·7% [21·4-48·0]). Among prodromal and at-risk groups, 44 (86%) of 51 of participants with RBD or hyposmia had positive α-synuclein SAA (16 of 18 with hyposmia, and 28 of 33 with RBD). 25 (8%) of 310 non-manifesting carriers (14 of 159 [9%] LRRK2 and 11 of 151 [7%] GBA) were positive. INTERPRETATION: This study represents the largest analysis so far of the α-synuclein SAA for the biochemical diagnosis of Parkinson's disease. Our results show that the assay classifies people with Parkinson's disease with high sensitivity and specificity, provides information about molecular heterogeneity, and detects prodromal individuals before diagnosis. These findings suggest a crucial role for the α-synuclein SAA in therapeutic development, both to identify pathologically defined subgroups of people with Parkinson's disease and to establish biomarker-defined at-risk cohorts. FUNDING: PPMI is funded by the Michael J Fox Foundation for Parkinson's Research and funding partners, including: Abbvie, AcureX, Aligning Science Across Parkinson's, Amathus Therapeutics, Avid Radiopharmaceuticals, Bial Biotech, Biohaven, Biogen, BioLegend, Bristol-Myers Squibb, Calico Labs, Celgene, Cerevel, Coave, DaCapo Brainscience, 4D Pharma, Denali, Edmond J Safra Foundation, Eli Lilly, GE Healthcare, Genentech, GlaxoSmithKline, Golub Capital, Insitro, Janssen Neuroscience, Lundbeck, Merck, Meso Scale Discovery, Neurocrine Biosciences, Prevail Therapeutics, Roche, Sanofi Genzyme, Servier, Takeda, Teva, UCB, VanquaBio, Verily, Voyager Therapeutics, and Yumanity.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Humanos , alfa-Sinucleína/genética , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Estudos Transversais , Anosmia , Biomarcadores
2.
Ann Clin Transl Neurol ; 10(5): 696-705, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972727

RESUMO

OBJECTIVES: Detection of α-synuclein aggregates by seed amplification is a promising Parkinson disease biomarker assay. Understanding intraindividual relationships of α-synuclein measures could inform optimal biomarker development. The objectives were to test accuracy of α-synuclein seed amplification assay in central (cerebrospinal fluid) and peripheral (submandibular gland) sources, compare to total α-synuclein measures, and investigate within-subject relationships. METHODS: The Systemic Synuclein Sampling Study aimed to characterize α-synuclein in multiple tissues and biofluids within Parkinson disease subjects (n = 59) and compared to healthy controls (n = 21). Motor and non-motor measures and dopamine transporter scans were obtained. Four measures of α-synuclein were compared: seed amplification assay in cerebrospinal fluid and formalin-fixed paraffin-embedded submandibular gland, total α-synuclein quantified in biofluids using enzyme-linked immunoassay, and aggregated α-synuclein in submandibular gland detected by immunohistochemistry. Accuracy of seed amplification assay for Parkinson disease diagnosis was examined and within-subject α-synuclein measures were compared. RESULTS: Sensitivity and specificity of α-synuclein seed amplification assay for Parkinson disease diagnosis was 92.6% and 90.5% in cerebrospinal fluid, and 73.2% and 78.6% in submandibular gland, respectively. 25/38 (65.8%) Parkinson disease participants were positive for both cerebrospinal fluid and submandibular gland seed amplification assay. Comparing accuracy for Parkinson disease diagnosis of different α-synuclein measures, cerebrospinal fluid seed amplification assay was the highest (Youden Index = 83.1%). 98.3% of all Parkinson disease cases had ≥1 measure of α-synuclein positive. INTERPRETATION: α-synuclein seed amplification assay (cerebrospinal fluid>submandibular gland) had higher sensitivity and specificity compared to total α-synuclein measures, and within-subject relationships of central and peripheral α-synuclein measures emerged.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/líquido cefalorraquidiano , alfa-Sinucleína/líquido cefalorraquidiano , Sensibilidade e Especificidade , Biomarcadores/líquido cefalorraquidiano
3.
NPJ Parkinsons Dis ; 7(1): 65, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312398

RESUMO

With the advent of the genetic era in Parkinson's disease (PD) research in 1997, α-synuclein was identified as an important player in a complex neurodegenerative disease that affects >10 million people worldwide. PD has been estimated to have an economic impact of $51.9 billion in the US alone. Since the initial association with PD, hundreds of researchers have contributed to elucidating the functions of α-synuclein in normal and pathological states, and these remain critical areas for continued research. With this position paper the authors strive to achieve two goals: first, to succinctly summarize the critical features that define α-synuclein's varied roles, as they are known today; and second, to identify the most pressing knowledge gaps and delineate a multipronged strategy for future research with the goal of enabling therapies to stop or slow disease progression in PD.

5.
Cell Rep ; 21(7): 1727-1736, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29141208

RESUMO

Mutations in presenilin (PSEN) 1 and 2, which encode components of the γ-secretase (GS) complex, cause familial Alzheimer's disease (FAD). It is hypothesized that altered GS-mediated processing of the amyloid precursor protein (APP) to the Aß42 fragment, which is accumulated in diseased brain, may be pathogenic. Here, we describe an in vitro model system that enables the facile analysis of neuronal disease mechanisms in non-neuronal patient cells using CRISPR gene activation of endogenous disease-relevant genes. In FAD patient-derived fibroblast cultures, CRISPR activation of APP or BACE unmasked an occult processivity defect in downstream GS-mediated carboxypeptidase cleavage of APP, ultimately leading to higher Aß42 levels. These data suggest that, selectively in neurons, relatively high levels of BACE1 activity lead to substrate pressure on FAD-mutant GS complexes, promoting CNS Aß42 accumulation. Our results introduce an additional platform for analysis of neurological disease.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Fibroblastos/metabolismo , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Sistemas CRISPR-Cas , Células Cultivadas , Fibroblastos/citologia , Humanos , Neurônios/citologia , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Pele/citologia , Ativação Transcricional
6.
Brain ; 140(5): 1399-1419, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28398476

RESUMO

α-Synuclein misfolding and aggregation is a hallmark in Parkinson's disease and in several other neurodegenerative diseases known as synucleinopathies. The toxic properties of α-synuclein are conserved from yeast to man, but the precise underpinnings of the cellular pathologies associated are still elusive, complicating the development of effective therapeutic strategies. Combining molecular genetics with target-based approaches, we established that glycation, an unavoidable age-associated post-translational modification, enhanced α-synuclein toxicity in vitro and in vivo, in Drosophila and in mice. Glycation affected primarily the N-terminal region of α-synuclein, reducing membrane binding, impaired the clearance of α-synuclein, and promoted the accumulation of toxic oligomers that impaired neuronal synaptic transmission. Strikingly, using glycation inhibitors, we demonstrated that normal clearance of α-synuclein was re-established, aggregation was reduced, and motor phenotypes in Drosophila were alleviated. Altogether, our study demonstrates glycation constitutes a novel drug target that can be explored in synucleinopathies as well as in other neurodegenerative conditions.


Assuntos
Doenças Neurodegenerativas/metabolismo , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade , Envelhecimento/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Drosophila , Inibidores Enzimáticos/farmacologia , Feminino , Glicosilação/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional , Aldeído Pirúvico/farmacologia , Ratos , Leveduras/efeitos dos fármacos , Leveduras/fisiologia , alfa-Sinucleína/efeitos dos fármacos , alfa-Sinucleína/fisiologia
7.
Acta Neuropathol ; 129(5): 695-713, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25778619

RESUMO

Extracellular α-Synuclein has been implicated in interneuronal propagation of disease pathology in Parkinson's Disease. How α-Synuclein is released into the extracellular space is still unclear. Here, we show that α-Synuclein is present in extracellular vesicles in the central nervous system. We find that sorting of α-Synuclein in extracellular vesicles is regulated by sumoylation and that sumoylation acts as a sorting factor for targeting of both, cytosolic and transmembrane proteins, to extracellular vesicles. We provide evidence that the SUMO-dependent sorting utilizes the endosomal sorting complex required for transport (ESCRT) by interaction with phosphoinositols. Ubiquitination of cargo proteins is so far the only known determinant for ESCRT-dependent sorting into the extracellular vesicle pathway. Our study reveals a function of SUMO protein modification as a Ubiquitin-independent ESCRT sorting signal, regulating the extracellular vesicle release of α-Synuclein. We deciphered in detail the molecular mechanism which directs α-Synuclein into extracellular vesicles which is of highest relevance for the understanding of Parkinson's disease pathogenesis and progression at the molecular level. We furthermore propose that sumo-dependent sorting constitutes a mechanism with more general implications for cell biology.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vesículas Extracelulares/metabolismo , Oligodendroglia/citologia , Proteína SUMO-1/metabolismo , Sumoilação/fisiologia , alfa-Sinucleína/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Vesículas Extracelulares/genética , Camundongos , Oligodendroglia/metabolismo , Proteína SUMO-1/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , alfa-Sinucleína/genética
8.
PLoS One ; 9(11): e112413, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25390032

RESUMO

Parkinson disease (PD) is a multi-factorial neurodegenerative disorder with loss of dopaminergic neurons in the substantia nigra and characteristic intracellular inclusions, called Lewy bodies. Genetic predisposition, such as point mutations and copy number variants of the SNCA gene locus can cause very similar PD-like neurodegeneration. The impact of altered α-synuclein protein expression on integrity and developmental potential of neuronal stem cells is largely unexplored, but may have wide ranging implications for PD manifestation and disease progression. Here, we investigated if induced pluripotent stem cell-derived neuronal precursor cells (NPCs) from a patient with Parkinson's disease carrying a genomic triplication of the SNCA gene (SNCA-Tri). Our goal was to determine if these cells these neuronal precursor cells already display pathological changes and impaired cellular function that would likely predispose them when differentiated to neurodegeneration. To achieve this aim, we assessed viability and cellular physiology in human SNCA-Tri NPCs both under normal and environmentally stressed conditions to model in vitro gene-environment interactions which may play a role in the initiation and progression of PD. Human SNCA-Tri NPCs displayed overall normal cellular and mitochondrial morphology, but showed substantial changes in growth, viability, cellular energy metabolism and stress resistance especially when challenged by starvation or toxicant challenge. Knockdown of α-synuclein in the SNCA-Tri NPCs by stably expressed short hairpin RNA (shRNA) resulted in reversal of the observed phenotypic changes. These data show for the first time that genetic alterations such as the SNCA gene triplication set the stage for decreased developmental fitness, accelerated aging, and increased neuronal cell loss. The observation of this "stem cell pathology" could have a great impact on both quality and quantity of neuronal networks and could provide a powerful new tool for development of neuroprotective strategies for PD.


Assuntos
Duplicação Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Doença de Parkinson/genética , Substância Negra/metabolismo , alfa-Sinucleína/genética , Apoptose/efeitos dos fármacos , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Meios de Cultura/química , Metabolismo Energético/genética , Feminino , Regulação da Expressão Gênica , Glucose/deficiência , Humanos , Peróxido de Hidrogênio/farmacologia , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Estaurosporina/farmacologia , Substância Negra/patologia , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/metabolismo
9.
Biochim Biophys Acta ; 1834(6): 1010-22, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23228929

RESUMO

Several human neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Familial Amyloidotic Polyneuropathy, have long been associated with, structural and functional changes in disease related proteins leading to aggregation into amyloid fibrils. Such changes can be triggered by post-translational modifications. Methylglyoxal modifications have been shown to induce the formation of small and stable native-like aggregates in the case of the amyloidogenic proteins insulin and α-synuclein. However, the fundamental biophysical mechanism underlying such methylglyoxal-induced protein aggregation is not yet fully understood. In this work cytochrome c (Cyt c) was used as a model protein for the characterization of specific glycation targets and to study their impact on protein structure, stability, and ability to form native-like aggregates. Our results show that methylglyoxal covalently modifies Cyt c at a single residue and induces early conformational changes that lead to the formation of native-like aggregates. Furthermore, partially unfolded species are formed, but do not seem to be implicated in the aggregation process. This shows a clear difference from the amyloid fibril mechanisms which involve partially or totally unfolded intermediates. Equilibrium-unfolding experiments show that glycation strongly decreases Cyt c conformational stability, which is balanced with an increase of conformational stability upon aggregation. Data collected from analytical and spectroscopic techniques, along with kinetic analysis based on least-squares parameter fitting and statistical model discrimination are used to help to understand the driving force underlying glycation-induced native-like aggregation, and enable the proposal of a comprehensive thermodynamic and kinetic model for native-like aggregation of methylglyoxal glycated Cyt c.


Assuntos
Amiloide/metabolismo , Citocromos c/metabolismo , Glicosilação , Aldeído Pirúvico/metabolismo , Sequência de Aminoácidos , Animais , Cavalos , Cinética , Lipídeos de Membrana/metabolismo , Conformação Proteica , Dobramento de Proteína , Termodinâmica
10.
J Neurosci ; 32(34): 11750-62, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22915117

RESUMO

Parkinson's disease (PD) is the most common representative of a group of disorders known as synucleinopathies, in which misfolding and aggregation of α-synuclein (a-syn) in various brain regions is the major pathological hallmark. Indeed, the motor symptoms in PD are caused by a heterogeneous degeneration of brain neurons not only in substantia nigra pars compacta but also in other extrastriatal areas of the brain. In addition to the well known motor dysfunction in PD patients, cognitive deficits and memory impairment are also an important part of the disorder, probably due to disruption of synaptic transmission and plasticity in extrastriatal areas, including the hippocampus. Here, we investigated the impact of a-syn aggregation on AMPA and NMDA receptor-mediated rat hippocampal (CA3-CA1) synaptic transmission and long-term potentiation (LTP), the neurophysiological basis for learning and memory. Our data show that prolonged exposure to a-syn oligomers, but not monomers or fibrils, increases basal synaptic transmission through NMDA receptor activation, triggering enhanced contribution of calcium-permeable AMPA receptors. Slices treated with a-syn oligomers were unable to respond with further potentiation to theta-burst stimulation, leading to impaired LTP. Prior delivery of a low-frequency train reinstated the ability to express LTP, implying that exposure to a-syn oligomers drives the increase of glutamatergic synaptic transmission, preventing further potentiation by physiological stimuli. Our novel findings provide mechanistic insight on how a-syn oligomers may trigger neuronal dysfunction and toxicity in PD and other synucleinopathies.


Assuntos
Potenciação de Longa Duração/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , alfa-Sinucleína/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Biofísica , Biotinilação , Linhagem Celular Tumoral , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Líquido Extracelular/metabolismo , Hipocampo/citologia , Humanos , Insulina/farmacologia , L-Lactato Desidrogenase/metabolismo , Potenciação de Longa Duração/fisiologia , Masculino , Neuroblastoma/patologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Valina/análogos & derivados , Valina/farmacologia , alfa-Sinucleína/biossíntese , alfa-Sinucleína/química
11.
BMC Biochem ; 12: 41, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21819598

RESUMO

BACKGROUND: Insulin is a hormone that regulates blood glucose homeostasis and is a central protein in a medical condition termed insulin injection amyloidosis. It is intimately associated with glycaemia and is vulnerable to glycation by glucose and other highly reactive carbonyls like methylglyoxal, especially in diabetic conditions. Protein glycation is involved in structure and stability changes that impair protein functionality, and is associated with several human diseases, such as diabetes and neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Familiar Amyloidotic Polyneuropathy. In the present work, methylglyoxal was investigated for their effects on the structure, stability and fibril formation of insulin. RESULTS: Methylglyoxal was found to induce the formation of insulin native-like aggregates and reduce protein fibrillation by blocking the formation of the seeding nuclei. Equilibrium-unfolding experiments using chaotropic agents showed that glycated insulin has a small conformational stability and a weaker dependence on denaturant concentration (smaller m-value). Our observations suggest that methylglyoxal modification of insulin leads to a less compact and less stable structure that may be associated to an increased protein dynamics. CONCLUSIONS: We propose that higher dynamics in glycated insulin could prevent the formation of the rigid cross-ß core structure found in amyloid fibrils, thereby contributing to the reduction in the ability to form fibrils and to the population of different aggregation pathways like the formation of native-like aggregates.


Assuntos
Insulina/química , Insulina/metabolismo , Multimerização Proteica/efeitos dos fármacos , Aldeído Pirúvico/farmacologia , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Glicosilação/efeitos dos fármacos , Humanos , Estabilidade Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína
12.
PLoS One ; 4(9): e6906, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19730729

RESUMO

BACKGROUND: Oligomerization and aggregation of alpha-synuclein molecules play a major role in neuronal dysfunction and loss in Parkinson's disease [1]. However, alpha-synuclein oligomerization and aggregation have mostly been detected indirectly in cells using detergent extraction methods [2], [3], [4]. A number of in vitro studies showed that dopamine can modulate the aggregation of alpha-synuclein by inhibiting the formation of or by disaggregating amyloid fibrils [5], [6], [7]. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that alpha-synuclein adopts a variety of conformations in primary neuronal cultures using fluorescence lifetime imaging microscopy (FLIM). Importantly, we found that dopamine, but not dopamine agonists, induced conformational changes in alpha-synuclein which could be prevented by blocking dopamine transport into the cell. Dopamine also induced conformational changes in alpha-synuclein expressed in neuronal cell lines, and these changes were also associated with alterations in oligomeric/aggregated species. CONCLUSION/SIGNIFICANCE: Our results show, for the first time, a direct effect of dopamine on the conformation of alpha-synuclein in neurons, which may help explain the increased vulnerability of dopaminergic neurons in Parkinson's disease.


Assuntos
Dopamina/farmacologia , alfa-Sinucleína/química , Animais , Linhagem Celular Tumoral , Células Cultivadas , Dicroísmo Circular , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Ratos , Ratos Sprague-Dawley
13.
Biochem J ; 416(3): 317-26, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18651835

RESUMO

Protein glycation is involved in structure and stability changes that impair protein functionality, which is associated with several human diseases, such as diabetes and amyloidotic neuropathies (Alzheimer's disease, Parkinson's disease and Andrade's syndrome). To understand the relationship of protein glycation with protein dysfunction, unfolding and beta-fibre formation, numerous studies have been carried out in vitro. All of these previous experiments were conducted in non-physiological or pseudo-physiological conditions that bear little to no resemblance to what may happen in a living cell. In vivo, glycation occurs in a crowded and organized environment, where proteins are exposed to a steady-state of glycation agents, namely methylglyoxal, whereas in vitro, a bolus of a suitable glycation agent is added to diluted protein samples. In the present study, yeast was shown to be an ideal model to investigate glycation in vivo since it shows different glycation phenotypes and presents specific protein glycation targets. A comparison between in vivo glycated enolase and purified enolase glycated in vitro revealed marked differences. All effects regarding structure and stability changes were enhanced when the protein was glycated in vitro. The same applies to enzyme activity loss, dimer dissociation and unfolding. However, the major difference lies in the nature and location of specific advanced glycation end-products. In vivo, glycation appears to be a specific process, where the same residues are consistently modified in the same way, whereas in vitro several residues are modified with different advanced glycation end-products.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Arginina/metabolismo , Estabilidade Enzimática , Produtos Finais de Glicação Avançada/química , Glicosilação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosfopiruvato Hidratase/química , Fosfopiruvato Hidratase/genética , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...